

Welcome to GFF3 Toolkit’s documentation!

Contents:

	gff3_QC readme

	gff3_QC full documentation

	gff3_fix readme

	gff3_fix full documentation

	gff3_merge readme

	gff3_merge full documentation

	gff3_sort readme

	gff3_to_fasta readme

	FAQ

Indices and tables

	Index

	Module Index

	Search Page

gff3_QC readme

Usage

gff3_QC.py [-h] [-g GFF] [-f FASTA] [-noncg] [-i] [-n ALLOWED_NUM_OF_N][-t [CHECK_N_FEATURE_TYPES [CHECK_N_FEATURE_TYPES …]]] [-o OUTPUT] [-v] [-s STATISTIC]

Testing environment

Python 3.x

Inputs

	GFF3: Specify the file name with the -g or –gff argument. Please note that this program requires gene/pseudogene and mRNA/pseudogenic_transcript to have an ID attribute in column 9.

	Fasta file: Specify the file name with the -f or –fasta argument. This file must be the Fasta file that the GFF3 seqids and coordinates refer to. For more information, refer to the GFF3 specification [https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3].

Outputs

	Error report for the input GFF3 file

	Line_num: Line numbers of the found problematic models in the input GFF3 file.

	Error_code: Error codes for the found problematic models. Please refer to lib/ERROR/ERROR.py to see the full list of Error_code and the corresponding Error_tag.

	Error_tag: Detail of the found errors for the problematic models. Please refer to lib/ERROR/ERROR.py to see the full list of Error_code and the corresponding Error_tag.

	Statistic report for the output files

	Error_code: Error codes for the found problematic models. Please refer to lib/ERROR/ERROR.py to see the full list of Error_code and the corresponding Error_tag.

	Number of problematic models: Calculate the type and number of error_code.

	Error_tag: Detail of the found errors for the problematic models. Please refer to lib/ERROR/ERROR.py to see the full list of Error_code and the corresponding Error_tag.

Quick start

gff3_QC -g example_file/example.gff3 -f example_file/reference.fa -o test -s statistic.txt

or

gff3_QC --gff example_file/example.gff3 --fasta example_file/reference.fa --output test --statistic statistic.txt

Optional arguments

	-h, –help

	show this help message and exit

	-g GFF, –gff GFF

	Genome annotation file, gff3 format

	-f FASTA, –fasta FASTA

	Genome sequences, fasta format

	-noncg, –noncanonical_gene

	gff3 file is not formatted in the canonical gene model format.

	-i, –initial_phase

	Check whether initial CDS phase is 0 (default - no check)

	-n ALLOWED_NUM_OF_N, –allowed_num_of_n ALLOWED_NUM_OF_N

	Max number of Ns allowed in a feature, anything more will be reported as an error (default: 0)

	-t [CHECK_N_FEATURE_TYPES [CHECK_N_FEATURE_TYPES …]], –check_n_feature_types [CHECK_N_FEATURE_TYPES [CHECK_N_FEATURE_TYPES …]]

	Count the number of Ns in each feature with the type specified, multiple types may be specified, ex: -t CDS exon (default: “CDS”)

	-o OUTPUT, –output OUTPUT

	output file name (default: report.txt)

	-s STATISTIC, –statistic STATISTIC

	statistic file name (default: statistic.txt

	-v, –version

	show program’s version number and exit

More information

	gff3_QC.py full documentation

gff3_QC full documentation

Background

The GFF3 format is flexible and easy to use for most biologists, but
this flexibility also allows many errors to be introduced. This QC
program aims to detect over 50 types of formatting errors.

Errors are detected by reviewing three types of feature sets in a GFF3
file, and thus are grouped into three categories (Error category –
feature type): * Intra-model errors (Ema) – multiple features within a
model * Inter-model errors (Emr) – multiple features across models *
Single feature errors (Esf) – each single feature.

In addition, we distinguish between errors that apply to protein-coding
genes in the ‘canonical’ Sequence ontology
style [https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md],
and errors that apply to ‘non-canonical’ gene models – i.e. non-coding
models, or protein-coding genes that are not modeled with gene, mRNA,
CDS and exon features. To perform error-checking on a gff3 file that
contains non-canonical gene models, you can specify the –noncg argument
when running the program.

Below we list all errors currently considered by gff3_QC.py, including
the error code, the error tag (a brief explanation of the error), and
whether the error is checked for non-canonical gene models (when using
the –noncg argument).

View the gff3_QC.py readme for instructions on how to
run the program.

Intra-model: Multiple features within a model (Ema)

The error category ‘Intra-model’ collects formatting errors that can be
found by jointly considering multiple features within a gene model, such
as gene, mRNA, exon, and CDS features. Errors in this category are given
an ‘Error_Code’ starting with ‘Ema’.

	Error_Code

	Error_Tag

	Checked if non-canonical

	Ema0001

	Parent feature start and end coordinates exceed those of child features

	Yes

	Ema0002

	Protein sequence contains internal stop codons

	No

	Ema0003

	This feature is not contained within the parent feature coordinates

	Yes

	Ema0004

	Incomplete gene feature that should contain at least one mRNA, exon, and CDS

	No

	Ema0005

	Pseudogene has invalid child feature type

	Yes

	Ema0006

	Wrong phase

	No

	Ema0007

	CDS and parent feature on different strands

	Yes

	Ema0008

	Warning for distinct isoforms that do not share any regions

	No

	Ema0009

	Incorrectly merged gene parent? Isoforms that do not share coding sequences are found

	No

Inter-model: Multiple features across models (Emr)

The error category ‘Inter-model’ collects formatting errors that can be
found by comparing multiple gene models. Errors in this category are
given an ‘Error_Code’ starting with ‘Emr’.

	Error_Code

	Error_Tag

	Checked if non-canonical

	Emr0001

	Duplicate transcript found

	No

	Emr0002

	Incorrectly split gene parent?

	No

	Emr0003

	Duplicate ID

	Yes

Single feature (Esf)

The error category ‘Single Feature’ collects formatting errors that can
be found by searching the GFF3 file line by line. Errors in this
category are given an ‘Error_Code’ starting with ‘Esf’.

	Error_Code

	Error_Tag

	Checked if non-canonical

	Esf0001

	Feature type may need to be changed to pseudogene

	Yes

	Esf0002

	Start/Stop is not a valid 1-based integer coordinate

	Yes

	Esf0003

	strand information missing

	Yes

	Esf0004

	Seqid not found in any ##sequence-region

	Yes

	Esf0005

	Start is less than the ##sequence-region start

	Yes

	Esf0006

	End is greater than the ##sequence-region end

	Yes

	Esf0007

	Seqid not found in the embedded ##FASTA

	Yes

	Esf0008

	End is greater than the embedded ##FASTA sequence length

	Yes

	Esf0009

	Found Ns in a feature using the embedded ##FASTA

	Yes

	Esf0010

	Seqid not found in the external FASTA file

	Yes

	Esf0011

	End is greater than the external FASTA sequence length

	Yes

	Esf0012

	Found Ns in a feature using the external FASTA

	Yes

	Esf0013

	White chars not allowed at the start of a line

	Yes

	Esf0014

	##gff-version” missing from the first line

	Yes

	Esf0015

	Expecting certain fields in the feature

	Yes

	Esf0016

	##sequence-region seqid may only appear once

	Yes

	Esf0017

	Start/End is not a valid integer

	Yes

	Esf0018

	Start is not less than or equal to end

	Yes

	Esf0019

	Version is not “3”

	Yes

	Esf0020

	Version is not a valid integer

	Yes

	Esf0021

	Unknown directive

	Yes

	Esf0022

	Features should contain 9 fields

	Yes

	Esf0023

	escape certain characters

	Yes

	Esf0024

	Score is not a valid floating point number

	Yes

	Esf0025

	Strand has illegal characters

	Yes

	Esf0026

	Phase is not 0, 1, or 2, or not a valid integer

	Yes

	Esf0027

	Phase is required for all CDS features

	Yes

	Esf0028

	Attributes must escape the percent (%) sign and any control characters

	Yes

	Esf0029

	Attributes must contain one and only one equal (=) sign

	Yes

	Esf0030

	Empty attribute tag

	Yes

	Esf0031

	Empty attribute value

	Yes

	Esf0032

	Found multiple attribute tags

	Yes

	Esf0033

	Found “, ” in a attribute, possible unescaped

	Yes

	Esf0034

	attribute has identical values (count, value)

	Yes

	Esf0035

	attribute has unresolved forward reference

	Yes

	Esf0036

	Value of a attribute contains unescaped “,”

	Yes

	Esf0037

	Target attribute should have 3 or 4 values

	Yes

	Esf0038

	Start/End value of Target attribute is not a valid integer coordinate

	Yes

	Esf0039

	Strand value of Target attribute has illegal characters

	Yes

	Esf0040

	Value of Is_circular attribute is not “true”

	Yes

	Esf0041

	Unknown reserved (uppercase) attribute

	Yes

gff3_fix readme

Usage

gff3_fix.py [-h] [-qc_r QC_REPORT] [-g GFF] [-og OUTPUT_GFF] [-v]

Testing environment

Python 3.x

Inputs

	Error report: Error report from gff3_QC.py. Specify the file name with the -qc_r or –qc_report argument. Error report should only include those errors that should be fixed. If errors identified by gff3_QC.py should not be fixed, remove lines containing errors from report file.

	GFF3: Specify the file name with the -g or –gff argument.

Outputs

	Corrected GFF3

Quick start

gff3_fix -qc_r error.txt -g example_file/example.gff3 -og corrected.gff3

Optional arguments

	-h, –help

	show this help message and exit

	-qc_r QC_REPORT, –qc_report QC_REPORT

	Error report from gff3_QC.py

	-g GFF, –gff GFF

	Genome annotation file, gff3 format

	-og OUTPUT_GFF, –output_gff OUTPUT_GFF

	output gff3 file name (default: corrected.gff3)

	-v, –version

	show program’s version number and exit

More information

	gff3_fix.py full documentation

gff3_fix full documentation

Background

The gff3_fix program fixes 30 error types detected by the program
gff3_QC.py. The section
‘gff3_fix’ lists all error types that currently can be fixed by the
gff3_fix.py function (currently 30), including the method used for the
fix. (Note that in some cases, this means removing the affected gene
model). The section ‘Fix function’ describes the methods used to fix the
error type in question. The section ‘Currently no automatic fix
available’ lists the error types which gff3_fix currently does not
handle.

Note that the gff3_fix program requires that all features contain an ID attribute. You can use lib/gff3_ID_generator.py to generate IDs if your gff3 file does not have them for every feature.

gff3_fix

	Error code

	Error tag

	Fix function

	Ema0001

	Parent feature start and end coordinates exceed those of child features

	fix_boundary

	Ema0003

	This feature is not contained within the parent feature coordinates

	fix_boundary

	Ema0005

	Pseudogene has invalid child feature type

	pseudogene

	Ema0006

	Wrong phase

	fix_phase

	Ema0007

	CDS and parent feature on different strands

	delete_model

	Ema0009

	Incorrectly merged gene parent? Isoforms that do not share coding sequences are found

	split

	Emr0001

	Duplicate transcript found

	remove_duplicate_trans

	Emr0002

	Incorrectly split gene parent?

	merge

	Esf0001

	Feature type may need to be changed to pseudogene

	pseudogene

	Esf0002

	Start/Stop is not a valid 1-based integer coordinate

	delete_model

	Esf0003

	strand information missing

	delete_model

	Esf0013

	White chars not allowed at the start of a line

	gff3 parse

	Esf0014

	##gff-version” missing from the first line

	add_gff3_version

	Esf0016

	##sequence-region seqid may only appear once

	remove_directive

	Esf0017

	Start/End is not a valid integer

	delete_model

	Esf0018

	Start is not less than or equal to end

	delete_model

	Esf0020

	Version is not a valid integer

	remove_directive

	Esf0021

	Unknown directive

	remove_directive

	Esf0022

	Features should contain 9 fields

	delete_model

	Esf0025

	Strand has illegal characters

	delete_model

	Esf0026

	Phase is not 0, 1, or 2, or not a valid integer

	fix_phase

	Esf0027

	Phase is required for all CDS features

	fix_phase

	Esf0029

	Attributes must contain one and only one equal (=) sign

	fix_attributes

	Esf0030

	Empty attribute tag

	fix_attributes

	Esf0031

	Empty attribute value

	fix_attributes

	Esf0032

	Found multiple attribute tags

	fix_attributes

	Esf0033

	Found “, ” in a attribute, possible unescaped

	fix_attributes

	Esf0034

	attribute has identical values (count, value)

	fix_attributes

	Esf0036

	Value of a attribute contains unescaped “,”

	fix_attributes

	Esf0041

	Unknown reserved (uppercase) attribute

	fix_attributes

	Esf0041

	Unknown reserved (uppercase) attribute

	fix_attributes

Fix function

	fix function

	method

	delete_model

	remove the whole model from the original gff3 file

	remove_duplicate_trans

	remove the duplicate transcripts

	remove_directive

	remove the directive

	pseudogene

	remove CDS feature and change the feature type of the other feature: first-level → pseudogene; second-level → pseudogenic_transcript; third-level(exon) → pseudogenic_exon

	fix_boundary

	update the coordinate of the parent by using the minimum and the maximum coordinate of the child feature

	fix_phase

	correct phase by the function next_phase = (3 - ((CDS['end'] - CDS['start'] + 1 - phase) % 3)) % 3. Note: If the first CDS segment doesn’t have a phase, the initial phase will be 0.

	fix_attributes

	remove empty attribute tag/value; remove the redundant equal sign(=); remove dupliacte attribute; make the first character of the unknown reserved attribute lower case; merge multiple attribute tag and remove the duplicate attribute value; replace , with %2C

	split

	split the incorrectly merged transcript from a gene model and generate a new gene model

	merge

	merge the incorrectly split gene model

	add_gff3_version

	Add ##gff-version 3 to the first line of gff3 file

	gff3 parse

	parse the gff3 file; ignore blank line in gff3; remove the white chars at the start of a line

Currently no automatic fix available

	Error code

	Error tag

	Ema0002

	Protein sequence contains internal stop codons

	Ema0004

	Incomplete gene feature that should contain at least one mRNA, exon, and CDS

	Ema0008

	Warning for distinct isoforms that do not share any regions

	Emr0003

	Duplicate ID

	Esf0004

	Seqid not found in any ##sequence-region

	Esf0005

	Start is less than the ##sequence-region start

	Esf0006

	End is greater than the ##sequence-region end

	Esf0007

	Seqid not found in the embedded ##FASTA

	Esf0008

	End is greater than the embedded ##FASTA sequence length

	Esf0009

	Found Ns in a feature using the embedded ##FASTA

	Esf0010

	Seqid not found in the external FASTA file

	Esf0011

	End is greater than the external FASTA sequence length

	Esf0012

	Found Ns in a feature using the external FASTA

	Esf0015

	Expecting certain fields in the feature

	Esf0019

	Version is not “3”

	Esf0023

	escape certain characters

	Esf0024

	Score is not a valid floating point number

	Esf0035

	attribute has unresolved forward reference

	Esf0037

	Target attribute should have 3 or 4 values

	Esf0038

	Start/End value of Target attribute is not a valid integer coordinate

	Esf0039

	Strand value of Target attribute has illegal characters

	Esf0040

	Value of Is_circular attribute is not “true”

gff3_merge readme

Usage

gff3_merge.py [-h] [-g1 GFF_FILE1] [-g2 GFF_FILE2] [-f FASTA] [-u1 USER_DEFINED_FILE1] [-u2 USER_DEFINED_FILE2] [-og OUTPUT_GFF] [-r REPORT_FILE] [-a] [-noAuto] [-v]

Testing environment

	Python 3.x

	Perl v5.16.3

Inputs

	GFF3 file with new or modified annotations, to be merged into GFF3 file 2. Specify the file name with the -g1 or –gff_file1 argument. Please note that this program requires gene/pseudogene and mRNA/pseudogenic_transcript to have an ID attribute in column 9. If replace tags are present (see below), these tags must refer to transcript/mRNA model IDs in the reference GFF3 file, specified by -g2.

	Reference models in GFF3 format: Specify the file name with the -g2 or –gff_file2 argument. The models from -g1 will be merged into this file, replacing models in -g2. Please note that this program requires gene/pseudogene and mRNA/pseudogenic_transcript to have an ID attribute in column 9. If the reference GFF3 file contains gene models with multiple isoforms, please review the section “Odd use cases” below prior to running the program.

	Fasta file: Specify the file name with the -f or –fasta argument. This file must be the Fasta file that the GFF3 seqids and coordinates in both GFF3 files refer to. For more information, refer to the GFF3 specification [https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3].

Outputs

	.gff: A merged gff3 file

	.txt: Merge log file

Quick start

	Merge the two files with auto-assignment of replace tags (default)
gff3_merge -g1 example_file/new_models.gff3 -g2 example_file/reference.gff3 -f example_file/reference.fa -og merged.gff -r merged_report.txt

	If your GFF3 files have proper replace tags at column 9 (Format: replace=[Transcript ID]), you can merge the two GFF3 files without auto-assignment of replace tags.
gff3_merge -g1 example_file/new_models_w_replace.gff3 -g2 example_file/reference.gff3 -f example_file/reference.fa -og merged.gff -r merged_report.txt -noAuto

Optional arguments

	-h, –help

	show this help message and exit

	-g1 GFF_FILE1, –gff_file1 GFF_FILE1

	Updated GFF3 file, such as Apollo gff

	-g2 GFF_FILE2, –gff_file2 GFF_FILE2

	Reference GFF3 file, such as Maker gff or OGS gff

	-f FASTA, –fasta FASTA

	Genomic sequences in the fasta format

	-u1 USER_DEFINED_FILE1, –user_defined_file1 USER_DEFINED_FILE1

	File for specifing parent and child features for fasta extraction from updated GFF3 file.

	-u2 USER_DEFINED_FILE2, –user_defined_file2 USER_DEFINED_FILE2

	File for specifing parent and child features for fasta extraction from reference GFF3 file.

	-og OUTPUT_GFF, –output_gff OUTPUT_GFF

	The merged GFF3 file (default: merged.gff)

	-r REPORT_FILE, –report_file REPORT_FILE

	Log file for the integration (default: merge_report.txt)

	-a, –all

	auto-assignment replace tags for all transcript features. (default: Only automatically assign replace tags for the transcript without replace tags)

	-noAuto, –auto_assignment

	Turn off the auto-assignment of replace tags, if you have had the replace tags in your update gff (default: Automatically assign replace tags and then merge the gff files)

	-v, –version

	show program’s version number and exit

More information

	gff3_merge.py full documentation

gff3_merge full documentation

Table of Contents

Background

Replace Tags

Automatically assigning replace tags

Rules for using user-defined files

Rules for adding a replace tag on your own

Replacing and adding models with multiple isoforms

Odd use cases

How the merge works

Background

The program gff3_merge.py was developed to merge output from the manual annotation program Apollo (http://genomearchitect.github.io/) with a single reference GFF3 file as part of the i5k pilot project. The idea is to have a program that will take manual annotations from Apollo, and fold these into a single reference gene set, where manual annotations replace overlapping models in the reference gene set.

At a minimum, we recommend running the program gff3_QC.py on the manual annotation GFF3 prior to running gff3_merge.py, if not also the reference GFF3 file. Otherwise, you may incorporate errors into the merged GFF3 file, or the merge program may not work to begin with.

The program gff3_merge.py can be conceptually separated into 3 steps:

	Recognize or auto-assign Replace Tags to transcripts or mRNAs in the modified GFF3 file

	Determine merge actions based on the Replace Tags:

	deletion – a model has the status ‘Delete’

	simple replacement – a model has a single replace tag

	new addition – a model has a replace tag ‘NA’

	split replacement – a modified model shares a replace tag with other modified models

	merge replacement – a model has multiple replace tags

	Models from modified GFF3 file replace models from reference GFF3 file based on merge actions in step 2.

Note that all information, including functional information (e.g. Name, Dbxrefs, etc.), from the modified GFF3 file replaces the corresponding reference information in the merged GFF3 file, meaning that any functional information in models slated to be replaced in the reference GFF3 file will NOT be carried over into the merged GFF3 file.

View the gff3_merge.py readme for instructions on how to run the program.

Replace Tags

(back)

The replace tag is a custom GFF3 attribute in the new or modified GFF3 file that specifies which mRNA(s) or transcript(s) from a single reference GFF3 file should be replaced by the new annotation. The replace tag follows this format: replace=[Name or ID attribute of reference mRNA or transcript to be replaced]. The replace tag can be directly added into the new or modified GFF3 file.

Here’s an example:

An updated model slated to replace the reference model, XM_015654027.1:

LGIB01000001.1 . gene 404667 404856 . - . ID=test.gene.1
LGIB01000001.1 . mRNA 404667 404856 . - . replace=XM_015654027.1;Name=Improved annotation;Parent=test.gene.1;ID=test.mRNA.1
LGIB01000001.1 . exon 404667 404856 . - . Parent=ID=test.mRNA.1;
LGIB01000001.1 . CDS 404667 404856 . - 0 Parent=ID=test.mRNA.1;

The reference model to be replaced:

LGIB01000001.1 Gnomon gene 359394 404856 . - . ID=gene28;
LGIB01000001.1 Gnomon mRNA 359394 404856 . - . ID=rna33;Parent=gene28;Name=XM_015654027.1;
LGIB01000001.1 Gnomon exon 404667 404856 . - . ID=id260;Parent=rna33;
LGIB01000001.1 Gnomon exon 362164 362815 . - . ID=id261;Parent=rna33;
LGIB01000001.1 Gnomon exon 359394 359920 . - . ID=id262;Parent=rna33;
LGIB01000001.1 Gnomon CDS 404667 404856 . - 0 ID=cds33;Parent=rna33;
LGIB01000001.1 Gnomon CDS 362164 362815 . - 2 ID=cds33;Parent=rna33;
LGIB01000001.1 Gnomon CDS 359515 359920 . - 1 ID=cds33;Parent=rna33;

Automatically assigning replace tags

(back)

You can choose to have the program auto-assign replace tags for you. (This is the default behavior.) The program will identify which models from the modified GFF3 file overlap in coding/non-coding sequence with models from the reference GFF3 file. The program will add a ‘replace’ attribute with the IDs of overlapping models. Specifically, the program will do the following:

	Extract CDS and pre-mRNA sequences from mRNA features from both GFF3 files. (For all other feature types, this program will extract transcript and pre-transcript from both GFF3 files)

	Use blastn to determine which sequences from the modified and reference GFF3 file align to each other in their coding/non-coding sequence. These parameters are used: -evalue 1e-10 -penalty -15 -ungapped

	If two models pass the alignment step, the program will add a ‘replace’ attribute with the ID of each overlapping model to the modified gff3 file.

	If no reference model overlaps with a new model, then the program will add ‘replace=NA’.

	If one model overlaps another in an intron or UTR (but not within the coding sequence), the auto-assignment program will NOT assign a replace tag. This is because it’s not always clear whether the overlapping model should be replaced. You will receive a warning message that this model does not have a replace tag and therefore was not incorporated into the merged gff3 file. You can then go back and manually add a replace tag to the original gff3 file.

Rules for using user-defined files

(back)

By default, the program will only use exon to generate spliced sequences for transcripts. If you choose to have the program auto-assign replace tags but there is a model without exon features in your GFF3 files, then you must generate user-defined files for specifying parent and child features for sequences extraction.

Example, a user-defined file for extracting CDS sequences from mRNA, using exon to generate spliced sequences for miRNA and using pseudogenic_exon to generate spliced sequences for pseudogenic_transcript.

User-defined file:

mRNA CDS
miRNA exon
pseudogenic_transcript pseudogenic_exon

Usage: The user-defined can be specified via –user_defined_file1 and –user_defined_file2 argument. You can either give –user_defined_file1 for sequences extraction from updated GFF3 file or give –user_defined_file2 for sequences extraction from reference GFF3 file. Then, the program will use blastn to determine which sequences from the updated and reference GFF3 file align to each other. Specifically, the program will do the blastn with the following query and subject sequences:

	If –user_defined_file1 is given

Query sequence | Subject sequence
— | —
user-defined sequences from updated GFF3 file | CDS sequences from reference GFF3 file
user-defined sequences from updated GFF3 file | transcript sequences from reference GFF3 file
pre-transcript sequences from updated GFF3 file | pre-transcript from reference GFF3 file

	If –user_defined_file2 is given

Query sequence | Subject sequence
— | —
CDS sequences from updated GFF3 file | user-defined sequences from reference GFF3 file
transcript sequences from updated GFF3 file | user-defined sequences from reference GFF3 file
pre-transcript sequences from updated GFF3 file | pre-transcript from reference GFF3 file

	If both –user_defined_file1 and –user_defined_file2 are given

Query sequence | Subject sequence
— | —
user-defined sequences from updated GFF3 file | user-defined sequences from reference GFF3 file
pre-transcript sequences from updated GFF3 file | pre-transcript from reference GFF3 file

Note:

	About the parent-child pair, the parent feature should be a transcript (e.g. mRNA, ncRNA) and the child feature is its children (e.g. exon, CDS).

	This program will only generate sequences for the parent-child pair in the user-defined file.

Rules for adding a replace tag on your own

(back)

	Replacing a model: Use the Name or ID attribute of the mRNA or transcript to be replaced. (Don’t use the ID or Name of the gene, exon, CDS, or other child features). replace=CLEC00001-RA

	Adding a new model: Use ‘NA’ as the replace tag value. replace=NA

	Deleting a reference model: Use the ‘status’ attribute with value ‘delete’ to indicate whether a model from the original gff3 should be deleted. The model that carries the status attribute will NOT be used in the merged gff3. status=delete

	Merging a reference model: If multiple reference models need to be merged into one, then the modified, merged model should carry replace tags with IDs or Names of all models to be merged. replace=CLEC00001-RA,CLEC00002-RA

	Splitting a reference model: If a reference model needs to be split, you will need to add a replace tag with the model ID or Name of the split reference model to BOTH models in the modified GFF3. E.g. split model 1: replace=CLEC00001-RA, split model 2: replace=CLEC00001-RA

	The merge program will check your replace tags, and will throw an error if your replace tag does not meet these assumptions. You will need to update your replace tags according to the error message, and run the program again after fixing.

Replacing and adding models with multiple isoforms

(back)

Although the merge program assigns and expects replace tags at the mRNA/transcript level, it essentially behaves as if it should replace models at the gene level. This is not noticeable if both the reference and modified model are single-isoform - however, it may cause confusion with multi-isoform reference models, or if a new isoform should be added. The program assumes that the modified model(s) should have replace tags for ALL isoforms of the gene model to be replaced.

Replacing a multi-isoform model: If a modified model overlaps with a multi-isoform model, the current behavior is to replace ALL isoforms, not single isoforms. The auto-assignment program will assign replace tags corresponding to all overlapping isoforms. The portion of the program that checks the replace tags assumes this behavior. If you added replace tags yourself, and a modified model does not contain replace tags for ALL isoforms of the gene model to be replaced, the program will throw an error, and you will need to add these replace tags for the program to complete.

Adding a new isoform: If you are adding a new isoform to an existing model, you MUST include all reference isoforms that you would like included in the merged GFF3 file to the modified GFF3 file.

Example, one isoform replacing two isoforms. The merged GFF3 file will contain only the single isoform in the modified GFF3 file. The modified GFF3 file contains replace tags for both isoforms of the reference model to be replaced.

Reference GFF3:

LGIB01000001.1 Gnomon gene 1267752 1268637 . - . ID=gene96;
LGIB01000001.1 Gnomon mRNA 1267752 1268637 . - . ID=rna96;Parent=gene96
LGIB01000001.1 Gnomon exon 1268346 1268637 . - . Parent=rna96
LGIB01000001.1 Gnomon exon 1267752 1268263 . - . Parent=rna96
LGIB01000001.1 Gnomon CDS 1268346 1268637 . - 0 Parent=rna96
LGIB01000001.1 Gnomon CDS 1267818 1268263 . - 2 Parent=rna96

LGIB01000001.1 Gnomon gene 1267818 1268637 . - . ID=gene100
LGIB01000001.1 Gnomon mRNA 1267818 1268637 . - . ID=rna100;Parent=gene100
LGIB01000001.1 Gnomon exon 1267818 1268263 . - . Parent=rna100
LGIB01000001.1 Gnomon exon 1268346 1268637 . - . Parent=rna100
LGIB01000001.1 Gnomon CDS 1267818 1268263 . - 2 Parent=rna100
LGIB01000001.1 Gnomon CDS 1268346 1268637 . - 0 Parent=rna100

Modified GFF3:

LGIB01000001.1 . gene 1267752 1268263 . - . ID=geneID1;
LGIB01000001.1 . mRNA 1267752 1268263 . - . Parent=geneID1;ID=mrnaID1;replace=rna96,rna100
LGIB01000001.1 . exon 1267752 1268263 . - . Parent=mrnaID1;
LGIB01000001.1 . CDS 1267818 1268261 . - 0 Parent=mrnaID1;

Example, adding a new isoform. The merged GFF3 file will contain all information from the modified GFF3 file. The modified GFF3 file contains both isoforms, even though one of the isoforms has identical coordinates to the reference isoform. Both mRNAs in the modified GFF3 file contain the same replace tags, because they both replace the reference model rna96.

Reference GFF3:

LGIB01000001.1 Gnomon gene 1267752 1268637 . - . ID=gene96;
LGIB01000001.1 Gnomon mRNA 1267752 1268637 . - . ID=rna96;Parent=gene96
LGIB01000001.1 Gnomon exon 1268346 1268637 . - . Parent=rna96
LGIB01000001.1 Gnomon exon 1267752 1268263 . - . Parent=rna96
LGIB01000001.1 Gnomon CDS 1268346 1268637 . - 0 Parent=rna96
LGIB01000001.1 Gnomon CDS 1267818 1268263 . - 2 Parent=rna96

Modified GFF3:

LGIB01000001.1 . gene 1267752 1268637 . - . ID=geneID1
LGIB01000001.1 . mRNA 1267752 1268263 . - . Parent=geneID1;ID=mRNAID1;replace=rna96
LGIB01000001.1 . exon 1267752 1268263 . - . Parent=mRNAID1
LGIB01000001.1 . CDS 1267818 1268261 . - 0 Parent=mRNAID1
LGIB01000001.1 . mRNA 1267752 1268637 . - . Parent=geneID1;ID=mRNAID2;replace=rna96
LGIB01000001.1 . exon 1268346 1268637 . - . Parent=mRNAID2
LGIB01000001.1 . CDS 1268346 1268637 . - 0 Parent=mRNAID2
LGIB01000001.1 . CDS 1267818 1268263 . - 2 Parent=mRNAID2
LGIB01000001.1 . exon 1267752 1268263 . - . Parent=mRNAID2

Odd use cases

(back)

	If you are replacing non-coding features, and/or replacing coding features with non-coding features, then you must manually include a replace tag for these replacement actions.

	It is possible for a modified model to have multiple isoforms that do not share CDS with each other - for example with partial models due to a poor genome assembly. In this case, the auto-assignment program will assign different replace tags to each isoform, but will then reject these auto-assigned replace tags because it expects isoforms of a gene model to have the same replace tags (see section “Some notes on multi-isoform models”, above). You’ll need to add the replace tags manually - all isoforms should carry the replace tags of all models to be replaced by the whole gene model.

	If one model overlaps another in an intron or UTR (but not within the coding sequence), the auto-assignment program will NOT assign a replace tag. This is because it’s not always clear whether the overlapping model should be replaced. You will receive a warning message that this model does not have a replace tag and therefore was not incorporated into the merged gff3 file. You can then go back and manually add a replace tag to the original gff3 file.

	Note that gff3_merge will NOT replace the ID attributes for existing features in your gff3 files. Therefore, if a new feature is added into the merged file that has an identical ID with an existing feature, then there will be duplicate IDs for this feature in the merged gff3 file.

How the merge works

(back)

In this pipeline, a GFF3 file is parsed into a structure composed of simple python dict and list. Within a list, every gene model uses a tree structure to store the relationships between parents and children. The figure below showed an example (LDEC000006) how it works on the gff file of computationally predicted gene models.
[image: _images/I5KNAL_gff-merge_part1.png]

The same structure is also applied on the gff file of manually curated gene models, but one more attribute, ‘replace=’, is added and required for manually curated gene models. This mandatory ‘Replaced Models’ field specifies which gene models from the computationally predicted gene set should be replaced by the manually curated models. Here we provide an example that a computationally predicted gene model (LDEC000006) is split into two models after manual curation (See the figure below), and thus both of the manually curated models has the replace tag, LDEC000006.
[image: _images/I5KNAL_gff-merge_part2.png]

During the MERGE phase, the LDEC000006 is removed from the python list/dict of computationally predicted gene set, as well as the tree structure of LDEC000006. Then, the two manually curated models are added into the python list/dict, and assigned with new unique IDs because this is a split replacement. Again, model IDs are handled as follows: For simple replacement, the IDs are inherited from the replaced computationally predicted models. For other types of replacement, new unique IDs are assigned. (back to the top)
[image: _images/I5KNAL_gff-merge_part3.png]

gff3_sort readme

Sort features in a gff3 file by according to their order on a scaffold, their coordinates on a scaffold, and parent-child relationships.

Inputs:

	GFF3 file: Specify the file name with the -g argument

Outputs:

	Sorted GFF3 file: Specify the file name with the -og argument

	All related features (with parent-child relationships) are separated by ### directives for easier downstream parsing

Usage:

	Specify the input, output file names and options using short arguments:

	gff3_sort -g example_file/example.gff3 -og example_file/example_sorted.gff

	Specify the input, output file names and options using long arguments:

	gff3_sort --gff_file example_file/example.gff3 --output_gff example_file/example_sorted.gff

Optional arguments:

	-h, –help

	show this help message and exit

	-g GFF_FILE, –gff_file GFF_FILE

	GFF3 file that you would like to sort.

	-og OUTPUT_GFF, –output_gff OUTPUT_GFF

	Sorted GFF3 file

	-t, SORT_TEMPLATE, –sort_template SORT_TEMPLATE

	A file that indicates the sorting order of features within a gene model

	-i, –isoform_sort

	Sort multi-isoform gene models by feature type (default: False)

	-v, –version

	show program’s version number and exit

	-r, –reference

	Sort scaffold (seqID) by order of appearance in gff3 file (default is by number)

Example:

Sort gff3 file without a sort template file

	example command:

gff3_sort --gff_file example.gff3 --output_gff example_sort.gff3

	Input gff3 file:

LGIB01000001.1 Gnomon gene 52056 58768 . + . ID=gene1
LGIB01000001.1 Gnomon mRNA 52056 58768 . + . ID=rna1;Parent=gene1
LGIB01000001.1 Gnomon CDS 52056 52096 . + 0 ID=cds1;Parent=rna1
LGIB01000001.1 Gnomon exon 52056 52096 . + . ID=id4;Parent=rna1
LGIB01000001.1 Gnomon mRNA 52056 58768 . + . ID=rna2;Parent=gene1
LGIB01000001.1 Gnomon CDS 52100 53000 . + 0 ID=cds2;Parent=rna2
LGIB01000001.1 Gnomon exon 52056 53000 . + . ID=id19;Parent=rna2

	Output gff3 file:

LGIB01000001.1 Gnomon gene 52056 58768 . + . ID=gene1
LGIB01000001.1 Gnomon mRNA 52056 58768 . + . ID=rna1;Parent=gene1
LGIB01000001.1 Gnomon exon 52056 52096 . + . ID=id4;Parent=rna1
LGIB01000001.1 Gnomon CDS 52056 52096 . + 0 ID=cds1;Parent=rna1
LGIB01000001.1 Gnomon mRNA 52056 58768 . + . ID=rna2;Parent=gene1
LGIB01000001.1 Gnomon exon 52056 53000 . + . ID=id19;Parent=rna2
LGIB01000001.1 Gnomon CDS 52100 53000 . + 0 ID=cds2;Parent=rna2

Sort gff3 file with a sort template file

	sort template file: A file that indicates the sorting order of features within a gene model. Feature type with the same sorting order should be in the same line and split by space.

gene pseudogene
mRNA
exon
CDS

Sort gff3 file without –isoform_sort

	example command:

gff3_sort --gff_file example.gff3 --sort_template sort_template.txt --output_gff example_sort.gff3

	Output gff3 file:

LGIB01000001.1 Gnomon gene 52056 58768 . + . ID=gene1
LGIB01000001.1 Gnomon mRNA 52056 58768 . + . ID=rna1;Parent=gene1
LGIB01000001.1 Gnomon exon 52056 52096 . + . ID=id4;Parent=rna1
LGIB01000001.1 Gnomon CDS 52056 52096 . + 0 ID=cds1;Parent=rna1
LGIB01000001.1 Gnomon mRNA 52056 58768 . + . ID=rna2;Parent=gene1
LGIB01000001.1 Gnomon exon 52056 53000 . + . ID=id19;Parent=rna2
LGIB01000001.1 Gnomon CDS 52100 53000 . + 0 ID=cds2;Parent=rna2

Note:

If not all the feature type are documented in the sort template file. gff3_sort will sort features by level(1st-level, 2nd-level, and etc) and then by the order in sort template file.

	sort template file:

gene pseudogene
CDS

	Output gff3 file:

LGIB01000001.1 Gnomon gene 52056 58768 . + . ID=gene1
LGIB01000001.1 Gnomon mRNA 52056 58768 . + . ID=rna1;Parent=gene1
LGIB01000001.1 Gnomon CDS 52056 52096 . + 0 ID=cds1;Parent=rna1
LGIB01000001.1 Gnomon exon 52056 52096 . + . ID=id4;Parent=rna1
LGIB01000001.1 Gnomon mRNA 52056 58768 . + . ID=rna2;Parent=gene1
LGIB01000001.1 Gnomon CDS 52100 53000 . + 0 ID=cds2;Parent=rna2
LGIB01000001.1 Gnomon exon 52056 53000 . + . ID=id19;Parent=rna2

Sort gff3 file with –isoform_sort

	example command:

gff3_sort --gff_file example.gff3 --sort_template sort_template.txt --isoform_sort --output_gff example_sort.gff3

	Output gff3 file:

LGIB01000001.1 Gnomon gene 52056 58768 . + . ID=gene1
LGIB01000001.1 Gnomon mRNA 52056 58768 . + . ID=rna1;Parent=gene1
LGIB01000001.1 Gnomon mRNA 52056 58768 . + . ID=rna2;Parent=gene1
LGIB01000001.1 Gnomon exon 52056 53000 . + . ID=id19;Parent=rna2
LGIB01000001.1 Gnomon exon 52056 52096 . + . ID=id4;Parent=rna1
LGIB01000001.1 Gnomon CDS 52056 52096 . + 0 ID=cds1;Parent=rna1
LGIB01000001.1 Gnomon CDS 52100 53000 . + 0 ID=cds2;Parent=rna2

Note:

If not all the feature type are documented in the sort template file. gff3_sort will sort features by the order in sort template file and then by level(1st-level, 2nd-level, and etc).

	sort template file:

gene pseudogene
CDS

	Output gff3 file:

LGIB01000001.1 Gnomon gene 52056 58768 . + . ID=gene1
LGIB01000001.1 Gnomon mRNA 52056 58768 . + . ID=rna1;Parent=gene1
LGIB01000001.1 Gnomon CDS 52056 52096 . + 0 ID=cds1;Parent=rna1
LGIB01000001.1 Gnomon exon 52056 52096 . + . ID=id4;Parent=rna1
LGIB01000001.1 Gnomon mRNA 52056 58768 . + . ID=rna2;Parent=gene1
LGIB01000001.1 Gnomon CDS 52100 53000 . + 0 ID=cds2;Parent=rna2
LGIB01000001.1 Gnomon exon 52056 53000 . + . ID=id19;Parent=rna2

Assumptions:

	Any features without a Parent attribute are ‘root’ features - the program will insert directives (lines beginning with ##) above these features.

	All child features occur after their respective Parent feature, but before new Parent features.

gff3_to_fasta readme

Extract sequences from specific regions of genome based on gff file.

Features

	Incorporation of gff3.py [https://github.com/hotdogee/gff3-py]: gff3.py is contributed by Han Lin [https://github.com/hotdogee] which uses simple data structures to parse a [GFF3] file into a structure composed of simple python [dict] and [list].

	Validation: Validate the GFF3 formatting errors utilizing QC methods contributed by the I5K Workspace@NAL team [https://i5k.nal.usda.gov/]. Provide WARNING messages for gene models that may have incorrect biological sequences generated because of [GFF3] formatting errors.

	Easy extraction of biological sequences: Provide options for extracting six types of biological sequences or user-specified type of spliced sequences.

	gene: Gene sequence for each record in the [FASTA] output. Gene or pseudogene features need to be included in the gff file

	exon: Exon sequence for each record in the [FASTA] output. Exon features need to be included in the gff file

	pre_trans: Genomic region of a transcript model, namely premature transcript (exon and intron regions included), for each record in the [FASTA] output. Transcript-level features (such as mRNA, rRNA, pseudogenic transcripts) need to be included in the gff file.

	trans: Spliced transcript (only exons included) for each record in the [FASTA] output. Exon features are mainly used for splicing. CDS features are used instead if exon features are absent. If both cds and exon features are absent, the transcript is not generated and a WARNING message is shown with the transcript ID.

	cds: Coding sequence (utr exons and introns excluded) for each record in the [FASTA] output. CDS features need to be included in the gff file.

	pep: Translated peptide sequences (translation based on cds regions) for each record in the [FASTA] output. CDS features need to be included in the gff file.

	user_defined: Specify parent and child features for fasta extraction via the -u argument, format [parent feature type] [child feature type].(e.g. -st user_defined -u miRNA exon)

	translator method for universal translation: The translator method is feasible for

	translation from 64 combitions of standard codons [https://web.archive.org/web/20161201123943/https://www-bimas.cit.nih.gov/molbio/translate/codes.html] (Only standard codons and universal stop condons are considered.)

	translation from codons with IUB Depiction [https://web.archive.org/web/20161201123943/https://www-bimas.cit.nih.gov/molbio/translate/codes.html]

	translation from mRNA (U contained) or CDS (T, instead of U contained)

Usage

gff3_to_fasta.py [-h] [-g GFF] [-f FASTA] [-st SEQUENCE_TYPE] [-u USER_DEFINED] [-d DEFLINE] [-o OUTPUT_PREFIX] [-noQC] [-v]

Testing enviroment

	Python 3.x

Required inputs

	GFF3: specify the file name with the -g argument

	Fasta file: specify the file name with the -f argument. This file must be the Fasta file that the GFF3 seqids and coordinates refer to. For more information, refer to the GFF3 specification [https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3].

	Output prefix: specify with the -o argument. All resulting fasta files will contain this prefix.

Outputs

	Fasta formatted sequence file based on the gff3 file.

Example command

	Specify the input, output file names and options using short arguments:

	gff3_to_fasta -g example_file/example.gff3 -f example_file/reference.fa -st all -d simple -o test_sequences

Optional arguments

	-h, –help

	show this help message and exit

	-g GFF, –gff GFF

	Genome annotation file in GFF3 format

	-f FASTA, –fasta FASTA

	Genome sequences in FASTA format

	-embf, –embedded_fasta

	Specify this option if you want to extract sequence from embedded fasta.

	-st SEQUENCE_TYPE, –sequence_type SEQUENCE_TYPE

	Type of sequences you would like to extract:

	“all” - FASTA files for all types of sequences listed below, except user_defined;

	“gene” - gene sequence for each record;

	“exon” - exon sequence for each record;

	“pre_trans” - genomic region of a transcript model (premature transcript);

	“trans” - spliced transcripts (only exons included);

	“cds” - coding sequences;

	“pep” - peptide sequences;

	“user_defined” - specify parent and child features via the -u argument.

	-u USER_DEFINED, –user_defined USER_DEFINED

	Specify parent and child features for fasta extraction, format [parent feature type] [child feature type]. Required if -st user_defined is given.

	Example: -st user_defined -u miRNA exon

	Lines with the child feature type given in -u must contain a Parent attribute referencing the given Parent feature type. Hence, the parent lines must also contain an ID attribute.

	If CDS is the child feature type, the program will take phase into account.

	-d DEFLINE, –defline DEFLINE

	Defline format in the output FASTA file:

	“simple” - only ID is shown in the defline;

	“complete” - complete information of the feature is shown in the defline.

	-o OUTPUT_PREFIX, –output_prefix OUTPUT_PREFIX

	Prefix of output file name

	-noQC, –quality_control

	Specify this option if you do not want to excute quality control for gff file. (default: QC is executed)

	-v, –version

	Show program version number and exit

FAQ

Q: The gff3_fix program fails with KeyError: ‘ID’.

Note that the gff3_fix program requires that all features contain an ID attribute. You can use lib/gff3_ID_generator.py to generate IDs if your gff3 file does not have them for every feature.

Q: When installing, the program fails with following message: ImportError: No module named wheel.bdist_wheel.

Since 1.4.2, we use wheel [https://pythonwheels.com/] to build our python package. This error message means that you don’t have wheel [https://pythonwheels.com/] on your machine. Use pip install wheel to install it first.

Q: When running one of the GFF3-toolkit programs, the program fails with a stack trace error.

Usually, this means that there is a problem with the input file. We are working on having each program output error messages with the input file line number. In the meantime, send us your input file and we can help figure out what the problem is.

Q: What are the licensing terms for this project?

This software/database is a “United States Government Work” under the terms of the United States Copyright Act. It was written as part of the author’s official duties as a United States Government employee and thus cannot be copyrighted. This software/database is freely available to the public for use. The National Agriculture Library and the U.S. Government have not placed any restriction on its use or reproduction. (Please see LICENSE.md [https://github.com/NAL-i5K/GFF3toolkit/blob/master/LICENSE])

Q: What kind of errors can be detected by gff3_QC.py? (Detection of GFF3 format errors: gff3_QC.py)

Currently, ~50 types of formatting errors can be detected. Errors are detected by reviewing three types of feature sets in a GFF3 file, and thus are grouped into three categories (Error category – feature type):

	Intra-model errors (Ema) – multiple features within a model

	Inter-model errors (Emr) – multiple features across models

	Single feature errors (Esf) – each single feature.

Please view the full documentation of gff3_QC.py for the full list of detected error types.

Q: Why is gff3_QC.py taking so long to run? (Detection of GFF3 format errors: gff3_QC.py)

gff3_QC.py can take a while if your gff3 file is large - please be patient!

Q: Why does the sorted gff3 file have a different number of lines than the input file? (Sort a GFF3 file: gff3_sort.py)

The program gff3_sort.py automatically ignores the hash tag lines other than ##gff-version 3 and ### while sorting a GFF3 file. After sorting, the program puts one line of ### between every gene model in the output GFF3. Therefore, the total lines of the output file might be different from the input. To check the consistency of the lines, please use the following command,

grep -v “#” input.gff |wc -l

grep -v “#” sorted.gff |wc -l

In addition, if your input gff file contains a feature that has two or more parent IDs, the program replicates the feature and lists it under each parent. Thus, the output file would have more lines than the input file.

Q: Which codons are considered for translation? (Generate biological sequences from a GFF3 file: gff3_to_fasta.py)

Translation from 64 combinations of standard codons [https://en.wikipedia.org/wiki/DNA_codon_table] (Only standard codons and universal stop codons are considered.)

Q: Why does gff3_merge.py sometimes reject auto-assigned replace tags when the reference model has multiple isoforms? (Merge 2 GFF3 files: gff3_merge.py)

It is possible for a modified model to have multiple isoforms that do not share CDS with each other - for example with partial models due to a poor genome assembly. In this case, the auto-assignment program will assign different replace tags to each isoform, but will then reject these auto-assigned replace tags because it expects isoforms of a gene model to have the same replace tags (see section “Some notes on multi-isoform models”, above). You’ll need to add the replace tags manually - all isoforms should carry the replace tags of all models to be replaced by the whole gene model.

Index

 Detections of different error types are implemented at different directories under ./lib/.

	Intra-model errors (Ema) - multiple features within a model (lib/intra_model)

	Inter-model errors (Emr) - multiple features across models (lib/inter_model)

	Single feature errors (Esf) - single features (lib/single_feature)

 _images/I5KNAL_gff-merge_part1.png
Computationally Predicted Gene Models

Gene model6 [C

LDEC000001 Gene model 1

LDEC000002 Gene model 2

LDEC0O00003 Gene model 3

LDEC0O00004 Gene model 4

LDEC0O00005 Gene model 5

LDECO00006 Gene model 6

LDEC0O00007 Gene model 7

LDEC000008 Gene model 8

LDEC0O00009 Gene model 9

LDEC000010 Gene model 10

[P]: pointer to parent
[DEC024671 | Gene model 24671 : pointer to children

_images/I5KNAL_gff-merge_part2.png
=

—

LDECO00006

Manually Curated Gene 1 |C

LDEC000006

—

[]

Manually Curated Gene 2 |C

LDEC000006

[

_static/comment-bright.png

_images/I5KNAL_gff-merge_part3.png
Official Gene Set Models

Gene model 24672 C Gene model 24673

R mRNA1 mRNA2

C replace= replace=

Exons or CDSs

LDECO00001 | Gene model 1
LDECO00002 | Gene model 2
LDECO00003 | Gene model 3
LDECO00004 | Gene model 4
LDECO00005 | Gene model 5
EF IEFaY{AIATsTaTaaT=0 Mr~Fe=Nr=vey; EYN-gp———
LDECO00007 | Gene model 7
LDECO00008 | Gene model 8
LDECO00009 | Gene model 9

LDEC024671 | Gene model 24671
LDEC024672 | Gene model 24672
LDEC024673 | Gene model 24673

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to GFF3 Toolkit’s documentation!

 		
 gff3_QC readme

 		
 Usage

 		
 Testing environment

 		
 Inputs

 		
 Outputs

 		
 Quick start

 		
 Optional arguments

 		
 More information

 		
 gff3_QC full documentation

 		
 Background

 		
 Intra-model: Multiple features within a model (Ema)

 		
 Inter-model: Multiple features across models (Emr)

 		
 Single feature (Esf)

 		
 gff3_fix readme

 		
 Usage

 		
 Testing environment

 		
 Inputs

 		
 Outputs

 		
 Quick start

 		
 Optional arguments

 		
 More information

 		
 gff3_fix full documentation

 		
 Background

 		
 gff3_fix

 		
 Fix function

 		
 Currently no automatic fix available

 		
 gff3_merge readme

 		
 Usage

 		
 Testing environment

 		
 Inputs

 		
 Outputs

 		
 Quick start

 		
 Optional arguments

 		
 More information

 		
 gff3_merge full documentation

 		
 Table of Contents

 		
 Background

 		
 Replace Tags

 		
 Automatically assigning replace tags

 		
 Rules for using user-defined files

 		
 Rules for adding a replace tag on your own

 		
 Replacing and adding models with multiple isoforms

 		
 Odd use cases

 		
 How the merge works

 		
 gff3_sort readme

 		
 Inputs:

 		
 Outputs:

 		
 Usage:

 		
 Optional arguments:

 		
 Example:

 		
 Sort gff3 file without a sort template file

 		
 Sort gff3 file with a sort template file

 		
 Assumptions:

 		
 gff3_to_fasta readme

 		
 Features

 		
 Usage

 		
 Testing enviroment

 		
 Required inputs

 		
 Outputs

 		
 Example command

 		
 Optional arguments

 		
 FAQ

 		
 Q: The gff3_fix program fails with KeyError: ‘ID’.

 		
 Q: When installing, the program fails with following message: ImportError: No module named wheel.bdist_wheel.

 		
 Q: When running one of the GFF3-toolkit programs, the program fails with a stack trace error.

 		
 Q: What are the licensing terms for this project?

 		
 Q: What kind of errors can be detected by gff3_QC.py? (Detection of GFF3 format errors: gff3_QC.py)

 		
 Q: Why is gff3_QC.py taking so long to run? (Detection of GFF3 format errors: gff3_QC.py)

 		
 Q: Why does the sorted gff3 file have a different number of lines than the input file? (Sort a GFF3 file: gff3_sort.py)

 		
 Q: Which codons are considered for translation? (Generate biological sequences from a GFF3 file: gff3_to_fasta.py)

 		
 Q: Why does gff3_merge.py sometimes reject auto-assigned replace tags when the reference model has multiple isoforms? (Merge 2 GFF3 files: gff3_merge.py)

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

